Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation.
نویسندگان
چکیده
Non-invasive, focal neurostimulation with ultrasound is a potentially powerful neuroscientific tool that requires effective transcranial focusing of ultrasound to develop. Time-reversal (TR) focusing using numerical simulations of transcranial ultrasound propagation can correct for the effect of the skull, but relies on accurate simulations. Here, focusing requirements for ultrasonic neurostimulation are established through a review of previously employed ultrasonic parameters, and consideration of deep brain targets. The specific limitations of finite-difference time domain (FDTD) and k-space corrected pseudospectral time domain (PSTD) schemes are tested numerically to establish the spatial points per wavelength and temporal points per period needed to achieve the desired accuracy while minimizing the computational burden. These criteria are confirmed through convergence testing of a fully simulated TR protocol using a virtual skull. The k-space PSTD scheme performed as well as, or better than, the widely used FDTD scheme across all individual error tests and in the convergence of large scale models, recommending it for use in simulated TR. Staircasing was shown to be the most serious source of error. Convergence testing indicated that higher sampling is required to achieve fine control of the pressure amplitude at the target than is needed for accurate spatial targeting.
منابع مشابه
Transcranial Focused Ultrasound Modulates Electrical Behavior of the Neurons: Design and Implementation of a Model
Background: Recently, ultrasonic neuromodulation research has been an important and interesting issue. Ultrasonic neuromodulation is possible by the use of low-intensity transcranial focused ultrasound (tFUS) to stimulate or inhibit the neural structures. The primary capability of this method is the improvement in the treatment progress of certain neurological and psychiatric disorders noninvas...
متن کاملNoninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis.
Deep brain stimulation and vagal nerve stimulation are therapeutically effective in treating some neurological diseases and psychiatric disorders. Optogenetic-based neurostimulation approaches are capable of activating individual synapses and yield the highest spatial control over brain circuit activity. Both electrical and light-based neurostimulation methods require intrusive procedures such ...
متن کاملMethodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human
Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modi.cation in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments ...
متن کاملTranscranial Focused Ultrasound Modulates Intrinsic and Evoked EEG Dynamics
BACKGROUND The integration of EEG recordings and transcranial neuromodulation has provided a useful construct for noninvasively investigating the modification of human brain circuit activity. Recent evidence has demonstrated that focused ultrasound can be targeted through the human skull to affect the amplitude of somatosensory evoked potentials and its associated spectral content. OBJECTIVE/...
متن کاملTheoretical Analysis of Transcranial Magneto-Acoustical Stimulation with Hodgkin-Huxley Neuron Model
Transcranial magneto-acoustical stimulation (TMAS) is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing pattern remains ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 141 3 شماره
صفحات -
تاریخ انتشار 2017